Search
Search Results
SearchNuvoton ,
find 135 items
- Sort by
- Most recent
- Popularity
Product
Learning
Watch time - 6:27
Nuvoton provides a development tool for capacitive Touch Sensors. The best feature of the calibration tool is that it uses the GUI to configure and tune your design automatically. Besides, the tool can export the configuration parameters and import them to another. Not only can greatly shorten the development time of developers, but also shorten the time for mass production. This video will introduce how to use this development tool and the definition of parameter.
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/
Contact us: SalesSupport@nuvoton.comon.com
#Product #Learning #Basic #en
Product
Learning
Watch time - 2:43
Hello! Everyone! I am Nuvoton FAE Tim.
Today, I will show you ML56 Capacitive Touch Key Technology.
First introduce the Capacitive Touch Key Fundamentals.
The capacitance of the sensor without a finger touch is called as “parasitic capacitance”, CP.
Parasitic capacitance results from the electric field between the sensor (including the sensor pad and traces) and other conductors in the system such as the ground planes, traces, any metal in the product’s chassis or enclosure, etc.
The capacitance between the sensor pad and the finger is CF.
The total capacitance CT of the sensor is the sum of CP and CF.
Next, we will explain the ML56 Capacitive Touch Key Sensing Method.
ML56 implements two switching capacitor banks for injecting charges to CP (or CT) and CR.
CR is the parasitic capacitance of reference channel.
After touch key calibration, CP and CR are balanced with CB and CCB (comparator output is “low”).
Touch the sensing touch key which makes CT = CP + CF Now the negative input terminal voltage of the comparator is lower than positive side and comparator output is “high”.
ML56 touch key controller will increase CCB to CCB’ to balance CT and CR again (comparator output is “low”). A finger touch can be detected by checking the difference of CCB and CCB’.
By comparing the CCB’ shift level from CCB, the steady state to a predetermined threshold, the algorithm can determine whether the touch key is in ON (Touch) or OFF (No Touch) state.
That's all for today's video, thank you everyone!
If you have any questions, please contact us.
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/
Contact us: SalesSupport@nuvoton.comon.com
#Product #Learning #Basic #en
Product
Learning
Watch time - 5:0
Introduce the waterproof and noise immunity of ML56 touch key.
Hello! Everyone! I am Nuvoton FAE Tim.
Today, I will show you the waterproof and noise immunity of ML56 touch key.
First introduce the waterproof and noise immunity of ML56 touch key.
Good waterproof function, support finger touch with 2 mm depth water droplet.
IEC 61000-4-6 conducted noise immunity (CNI) with 10 Vrms noise voltage.
Next, we will explain the related parameter settings of the ML56 touch key, and first explain the touch sensitivity.
#Pulse Width (Touch key sensing pulse width time control)
Touch key sensitivity can be adjusted by setting Pulse Width properly, shorter Pulse Width setting comes with poor sensitivity and less power-consumption, vice versa.
Then explain the stability of touch performance, Part 1.
#Times (Touch key sensing times control)
Touch key raw data stability can be adjusted by setting Times properly, shorter Times setting comes with poor raw data stability and less power-consumption, vice versa.
Stability of touch performance, Part 2.
#IIR (IIR filter)
IIR filter can control the ratio of current raw data and previous one. User can enable IIR Filter to be against noise. It will increase the touch response time when enables IIR Filter.
Stability of touch performance, Part 3.
#Debounce (Touch key debounce)
Touch key stability can be adjusted by setting Debounce properly, the debounce times for touch key entry (on) and release (off) detection, shorter Debounce setting comes with faster touch response time, vice versa.
Stability of touch performance, Part 4.
#Trace Baseline (Baseline is generated by “Calibration”)
Touch key auto environment compensation is an algorithm that baseline tracking each touch key automatically at power-up and keeps compensating environment variation affects touch key performance during runtime.
Based on the above parameter description, the following introduces the waterproof and noise immunity parameter settings.
The first is waterproof parameter setting.
Good waterproof function, support finger touch with 2 mm depth water droplet. Touch key system parameters are shown in the table
Pulse Width = 500 ns
Times = 128
Next is the noise immunity parameter setting
IEC 61000-4-6 conducted noise immunity (CNI) with 10 Vrms noise voltage. Touch key system parameters are shown in the table.
Pulse Width = 2 us
Times = 128
IIR New = 6, Old = 2
Debounce Entry = 1, Release = 1
Then we use the ML56 NuMaker Board to show you the waterproof function of the touch key.
Dip the finger in water first, and then touch the touch key. Repeat the above actions, we can see that the touch key still works normally and is not affected.
Finally, we use the ML56 NuMaker Board to show you the noise immunity ability of the touch key.
Turn on the walkie-talkie first, and then interfere with the touch key at close range, we can see that the touch key still operate normally and is not affected.
That's all for today's video, thank you everyone!
If you have any questions, please contact us.
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/
Contact us: SalesSupport@nuvoton.comon.com
#Product #Learning #Basic #en
#Basic
#ML56
#NuMicro
#Pulse Width (Touch key sensing pulse width time control)
#IIR (IIR filter)
#Product
#en
#Trace Baseline (Baseline is generated by “Calibration”)
#Times (Touch key sensing times control)
#8051
#Learning
#Debounce (Touch key debounce)
#Nuvoton
#touch key IC
#noise immunity
#low power
#ML54
#waterproof
#MCU
#ML51
Training
Learning
Watch time - 4:0
Take Nuvoton NuMaker-IIoT-NUC980 running Linux as the platform and learn how to develop various functions. Watch this video and you will learn how to install Buildroot for NuMaker-IIoT-NUC980 board before starting development.
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/numaker-nuc980-iiot
Contact us: SalesSupport@nuvoton.com
#Training #Learning #Basic #en
Watch time - 5:11
Loudspeakers are highly nonlinear and time-variant systems. Signal distortion, heating, aging, climate and other external influences limit the maximum level and the quality of the reproduced sound. This video shows how Nuvoton smart amplifier can greatly improve the speaker performance and the sound quality by offering mechanical & thermal protection, automatic system alignment, active compensation of transducer nonlinearities, and active stabilization of the voice coil rest position based on the Klippel Controlled Sound (KCS) technology.
Watch time - 5:10
Loudspeakers are highly nonlinear and time-variant systems. Signal distortion, heating, aging, climate and other external influences limit the maximum level and the quality of the reproduced sound. This video shows how Nuvoton smart amplifier can greatly improve the speaker performance and the sound quality by offering mechanical & thermal protection, automatic system alignment, active compensation of transducer nonlinearities, and active stabilization of the voice coil rest position based on the Klippel Controlled Sound (KCS) technology.
Product
Learning
Watch time - 9:3
Nuvoton announced the latest ML51/ML54/ML56 microcontroller, built-in capacitive touch sensing, LCD driver highly integrated low power platform. Based on 1T 8051 core, running up to 24MHz, the power consumption in normal run mode is 80uA/MHz, lower than 1uA in power down mode the power consumption while power down with LCD on is lower than 20uA.
0:00 intro
0:37 NuMicro 8051 Microcontroller
1:38 ML51/ML54/ML56 Product Portfolio
2:18 ML51/ML54/ML56 Features
3:27 Broad Scalability
4:05 Provide 4 Different Power Modes
4:44 LCD Driver Feature
5:52 Touch Key Features
7:05 Target Applications
#Product #Learning #Basic #en
#ML51 #ML54 #ML56 #8051 #LowPower #LCD-Driver #HumanMachineInterface #HMI #TouchKey-IC #HomeAppliance #EmbeddedWorld2022
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/
Contact us: SalesSupport@nuvoton.com
Training
Tool
Learning
Watch time - 5:53
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to connect to AWS IoT service using MbedOS on NuMaker-IoT-M487 development board
The sample code is on GitHub, the URL is https://github.com/OpenNuvoton/Mbed-to-AWS-IoT
To avoid typos, use keyword “OpenNuvoton” to search on google.
Find the Nuvoton on GitHub, and click it
On the Nuvoton GitHub page, use AWS as keyword to search the sample code: Mbed-to-AWS-IoT
Right click to copy the URL for later use.
Then enter the URL https://ide.mbed.com
After log in, make sure the NuMaker-IoT-M487 board has selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS”. There is detailed description of how to add a board.
Click the “Import” on the left of menu bar.
In the “Import Wizard”, click “Click here”
Please paste or key in the sample code URL to “Source URL:”,
Select Import as “Program”
Click “Import Name”, the project name “Mbed-to-AWS-IoT” will be filled automatically.
Then click “Import”.
After sample code imported, click “mbed_app.json” to open it.
To use Wi-Fi, you have to configure SSID and password to match your Wi-Fi AP setting.
In NuMaker_IOT_M487 session of mbed_app.json file, find the “wifi-ssid” to set your SSID. It is at line 44.
And then set password to “wifi-password”. It is at line 45.
Save it and click “Compile” to build the code.
It takes time to compile code, please wait.
You need an AWS account to use AWS IoT Core service. To create a thing, a policy, and certificates, then put the certificate to MQTT_server_setting.h file in the sample code. The sample code has included a certificate provided by Nuvoton for test only, so that you can quickly operate this example. If you don’t have an AWS account, it is recommended that you apply for an account and use your certificates in the example to observe the connection status on AWS IoT console page.
After completed, “Success” will appear in the compile output window.
The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder. In Chrome, you can click download file and select “Show in folder”.
Then we connect the NuMaker-IoT-M487 USB port to your computer.
Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx.
Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate.
And no flow control settings. Then “Open” it.
Back to the folder you just download the binary firmware file (Mbed-to-AWS-IoT.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive.
You will see the copying progress dialog box.
You can see the messages on terminal.
The device has acquired IP address from Wi-Fi AP, then successfully connect to AWS IoT and subscribe a topic.
Then press button (SW2) on board to send a message.
You can see the message published to server and received a message from server.
That’s all for this tutorial. Thank you for watching.
Welcome to subscribe to our channel.
If you want to get more information, please contact us “SalesSupport@nuvoton.com”
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487
Contact us: SalesSupport@nuvoton.com
#tool #training #learning #intermediate #en
Product
Application
Webinar
Watch time - 59:3
Developing IoT devices can be a painful process. In this webinar, you will learn how to develop an IoT enabled device quickly and easily with Nuvoton IoT platforms. We will cover IoT device system architectures, security consideration, development kits for different cloud services, and the latest practices to bring your IoT products time to market quickly.
Speaker: UE00 Senior Product Marketing Manager, Harry Chen
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://bit.ly/3bk0AD8
Contact us: SalesSupport@nuvoton.com
#Product #Application #Webinar #General #en
Application
Learning
Watch time - 1:30
Nuvoton provides a new development platform, Chili. Chili is designed by NUC980 family. A user can begin application developing within 15 minutes once receiving this PCB. This PCB is very small and can be easily installed into another system after development complete. It is suitable for some remote control or IoT applications.
#application #learning #intermediate #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
Buy now: https://direct.nuvoton.com/tw/numaker-rtu-nuc980?search_query=Chili&results=1
Contact us: SalesSupport@nuvoton.com
Watch time - 3:32
The NAU82011YG is a highly efficient, filter-free, mono Class-D audio amplifier with variable gain, which is capable of driving a 4Ω load with up to 2.9W output power. This device provides chip enable pin with extremely low standby current and fast start-up time of 4ms.
The NAU82011YG is ideal for battery driven portable applications. NAU82011YG features 91% efficiency, low quiescent current (i.e. 1.25mA at 3.6V) and superior EMI performance. The audio input of this device can be configured as either single-ended or differential input mode.
Target Applications:
• Portable Audio Device/Speaker
• Portable Navigation Device
• Tablet PC
Key Features:
• Audio Input
- Differential / Single-end input
- DC PSRR Typ.@95dB
- CMRR Typ.@63dB
• Audio Output
- Powerful Mono Class-D Amplifier
- 2.9W (4Ω @ 5V, 10% THD+N)
- 2.3W (4Ω @ 5V, 1% THD+N)
- Low Output Noise: 20 μVRMS
• Advance Feature
- Low Current Shutdown Mode
- Click-and Pop Suppression
- Integrated Image Reject Filter
- Integrated feedback resistor of 300 kΩ
• Operating Characteristics
- voltage range: 2.5 V to 5.5 V
- Temperature range: -40°C to 85°C
- Low Quiescent Current: 1.2mA@3.6V, 1.7mA@5V
• Package
- WLCPS-9
Application
Learning
Watch time - 3:49
A HMI and RTU industrial automation solution demo which is designed by Nuvoton’s partner. Nuvoton NUC970 series supports 2D Graphic and RGB 24-bit LCD display interface. With different LQFP package and DRAM embedded, NUC970 provides a solution platform for HMI products. NUC980 series does not have graphic engine, but supports up to 10 UARTs with DMA mode. Using DMA mode can reduce CPU loading and provides a better computing requirement. NUC980 series also supports different wireless modules. It is suitable for Industrial IoT applications.
#Application #Learning #Basic #en
-
For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC
buy now: https://direct.nuvoton.com/tw/numaker-nuc980-iiot
contact us: SalesSupport@nuvoton.com